Physics at the Tevatron

Lecture II

Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory

Outline

- Lecture I
 - The Tevatron, CDF and DØ
 - Production Cross Section Measurements
 - Lepton identification
- Lecture II
 - The W boson mass, the Top Quark and the Higgs Boson
 - Lepton calibration, jet energy scale and b-tagging
- Lecture III
 - B_s mixing and B_s→µµ rare decay
 - Vertex resolution and particle identification
- Lecture IV
 - Supersymmetry and High Mass Dilepton/Diphoton
 - Missing E_T

All lectures available at:

The W boson, the top quark and the Higgs boson

- Top quark is the heaviest known fundamental particle
 - Today: m_{top} =170.9+-1.8 GeV
 - Run 1: m_{top} =178+-4.3 GeV/c²
 - Is this large mass telling us something about electroweak symmetry breaking?
 - · Top yukawa coupling:
 - $<H>/(\sqrt{2} \text{ mtop}) = 1.019+-0.011$
- Masses related through radiative corrections:
 - $m_W \sim M_{top}^2$
 - $m_W \sim ln(m_H)$
- If there are new particles the relation might change:
 - Precision measurement of top quark and W boson mass can reveal new physics

The W[±] boson

W Boson mass

- Real precision measurement:
 - LEP: M_W =80.367±0.033 GeV/c²
 - Precision: 0.04%
 - => Very challenging!
- Main measurement ingredients:
 - Lepton p_T
 - Hadronic recoil parallel to lepton: u_{||}

- but statistically limited:
 - About a factor 10 less Z's than W's
 - Most systematic uncertainties are related to size of Z sample
 - Will scale with $1/\sqrt{N_Z}$ (=1/ \sqrt{L})

$$m_T = \sqrt{2p_T^l p_T (1 - \cos \Delta \phi)},$$

$$p_T \approx |p_T + u_{||}|$$

$$m_T \approx 2p_T \sqrt{1 + u_{||}/p_T} \approx 2p_T + u_{||}$$

Lepton Momentum Scale

Momentum scale:

- Cosmic ray data used for detailed cell-by-cell calibration of CDF drift chamber
- E/p of e+ and e- used to make further small corrections to p measurement
- Peak position of overall E/p used to set electron energy scale
 - Tail sensitive to passive material

Lepton Momentum Scale and Resolution

Systematic uncertainty on momentum scale: 0.04%

Systematic Uncertainties

m_T Fit Uncertainties				
Source	$W \to \mu \nu$	$W \rightarrow e \nu$	Correlation	on
Tracker Momentum Scale	17	17	100%	
Calorimeter Energy Scale	0	25	0%	
Lepton Resolution	3	9	0%	
Lepton Efficiency	1	3	0%	Limited by data
Lepton Tower Removal	5	8	100%	statistics
Recoil Scale	9	9	100%	
Recoil Resolution	7	7	100%	
Backgrounds	9	8	0%	T
PDFs	11	11	100%	Limited by data
W Boson p_T	3	3	100%	and theoretical
Photon Radiation	12	11	100%	understanding
Statistical	54	48	0%	
Total	60	62	-	

TABLE IX: Uncertainties in units of MeV on the transverse mass fit for m_W in the $W \to \mu \nu$ and $W \to e \nu$ samples.

- Overall uncertainty 60 MeV for both analyses
 - Careful treatment of correlations between them
- Dominated by stat. error (50 MeV) vs syst. (33 MeV)

W Boson Mass

New world average:

$$M_{w}$$
=80398 ± 25 MeV

Ultimate Run 2 precision:

The Top Quark

Top Quark Production and Decay

At Tevatron, mainly produced in pairs via the strong interaction

Decay via the electroweak interactions Br(t →Wb) ~ 100%
 Final state is characterized by the decay of the W boson

Different sensitivity and challenges in each channel

SM: $t\bar{t}$ pair production, Br(t \rightarrow bW)=100%, Br(W \rightarrow lv)=1/9=11%

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T
l+jets (24/81) 1 lepton + 4 jets + missing E_T
fully hadronic (36/81) 6 jets (here: l=e,\mu)
```


SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


missing ET

SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


more jets

Top Event Categories

Finding the Top

- Top is overwhelmed by backgrounds:
 - Even for 4 jets the top fraction is only 30%
 - This is very different to the LHC (about 80%)!
- Use b-jets to purify sample
 - Also analyses using Neural Network to separate top kinematically

Finding the b-jets

- Exploit large lifetime of the b-hadron
 - B-hadron flies before it decays: d=cτ
 - Lifetime τ =1.5 ps⁻¹
 - $d=c\tau = 460 \ \mu m$
 - Can be resolved with silicon detector resolution
- Procedure "Secondary Vertex":
 - reconstruct primary vertex:
 - resolution ~ 30 μm
 - Search tracks inconsistent with primary vertex (large d₀):
 - Candidates for secondary vertex
 - See whether three or two of those intersect at one point
 - Require displacement of secondary from primary vertex
 - Form L_{xv}: transverse decay distance projected onto jet axis:
 - $-L_{xv}>0$: b-tag along the jet direction => real b-tag or mistag
 - $-L_{xv}$ <0: b-tag opposite to jet direction => mistag!
 - Significance: $\delta L_{xy} / L_{xy} > 7$ i.e. 7σ significant displacement

Characterise the B-tagger: Efficiency

- Efficiency of tagging a true b-jet
 - Use Data sample enriched in b-jets
 - Select jets with electron or muons
 - From semi-leptonic b-decay
 - Measure efficiency in data and MC

electror

Achieve about 40-50% (fall-off at high eta due to limited tracking coverage)

Characterise the B-tagger: Mistag rate

- Mistag Rate measurement:
 - Probability of light quarks to be misidentified
 - Use "negative" tags: L_{xy}<0
 - Can only arise due to misreconstruction
 - Mistag rate for E_T=50 GeV:
 - Tight: 0.5% (ε=43%)
 - Loose: 2% (ε=50%)
 - Depending on physics analyses:
 - Choose "tight" or "loose" tagging algorithm

Jet Probability

- Complementary to full secondary vertex reconstruction:
 - Evaluate probability of tracks to be prompt
 - Multiply probabilities of individual tracks together
 - "Jet Probability"
- Continuous distribution
 - Can optimize cut valued for each analysis
 - Can also use this well for charm

Neural Net B-tagging

- Rather new for CDF and D0!
 - Nice to have continuous variable
 - Can be optimised depending on analysis requirements
- Several strategies
 - DØ uses 7 input variables from their three standard taggers
 - increase efficiency by 30% or purity by 30% over any single one
 - CDF uses 24 variables on top of SecVtx only
 - Improve purity of tags by 50-70%
 - Sacrifice 10% of efficiency

The Top Signal: Lepton + Jets

Select:

- 1 electron or muon
- Large missing E_T
- 1 or 2 b-tagged jets

Data and Monte Carlo Comparison

The Top Signal: Dilepton

Select:

- 2 leptons: ee, eμ, μμ
- Large missing E_T
- 2 jets (with or w/o b-tag)

 σ =6.2 ± 0.9 (stat) ± 0.9 (sys) pb

25

The Top Cross Section

- Measured using many different techniques
- Good agreement
 - between all measurements
 - between data and theory
- Can be used to extract top mass:

$$- m_{top} = 166.9 + 7.0_{-6.4} \text{ GeV/c}^2$$

Top Mass Measurement: tt→(blv)(bqq)

- 4 jets, 1 lepton and missing E_T
 - Which jet belongs to what?
 - Combinatorics!
- B-tagging helps:
 - 2 b-tags =>2 combinations
 - 1 b-tag => 6 combinations
 - 0 b-tags =>12 combinations
- Two Strategies:
 - Template method:
 - Uses "best" combination
 - Chi2 fit requires $m(t)=m(\overline{t})$
 - Matrix Element method:
 - Uses all combinations
 - Assign probability depending on kinematic consistency with top

Top Mass Determination

Inputs:

- Jet 4-vectors
- Lepton 4-vector
- Remaining transverse energy, p_{T,UE}:

•
$$p_{T,v} = -(p_{T,I} + p_{T,UE} + \sum p_{T,jet})$$

Constraints:

- $M(Iv)=M_W$
- $M(q\overline{q})=M_W$
- $M(t) = M(\overline{t})$

Unknown:

- Neutrino p_z
- 1 unknown, 3 constraints:
 - Overconstrained
 - Can measure M(t) for each event: m_t^{reco}

Selecting correct combination 20-50% of the time

Jet Energy Scale

Jet energy scale

 Determine the energy of the partons produced in the hard scattering process

Instrumental effects:

- Non-linearity of calorimeter
- Response to hadrons
- Poorly instrumented regions

Physics effects:

- Initial and final state radiation
- Underlying event
- Hadronization
- Flavor of parton
- Test each in data and MC

Jet Energy Scale Studies

- Measure energy response to charged particles
 - Test beam and in situ
 - CDF: Response rather nonlinear
 - DØ: compensating =>has better response
 - Some compensation "lost" due to shorter gate in run 2
- CDF uses fast parameterized showers:
 - GFLASH
 - Tuned to data
- DØ uses full GEANT

Testing Jets in Photon-Jet and Z-Jet Data

- Agreement within 3% but differences in distributions!
 - Data, Pythia and Herwig all a little different in photon-jet data
- These are physics effects!
 - Detailed understanding with higher statistics and newer MC in progress

Jet Energy Scale Uncertainties

In-situ Measurement of JES

 Additionally, use W→jj mass resonance (M_{jj}) to measure the jet energy scale (JES) uncertainty

Measurement of JES scales directly with data statistics

Template Analysis Results on m_{top}

- Using 307 candidate events in 1.7 fb⁻¹
- Using in-situ JES calibration results in factor two improvement on JES

$$m_{top} = 171.6 \pm 2.1 \pm 1.1 = 171.6 \pm 2.4 \text{ GeV/c}^2$$

Matrix Element Results on m_{top}

Using most recent analysis of 343 candidates in 1.7 fb⁻¹ m_{top} is:

$$m_t = 172.7 \pm 1.3 \text{ (stat.)} \pm 1.2 \text{ (JES)} \pm 1.2 \text{ (syst) } \text{GeV/c}^2 = 172.7 \pm 2.1 \text{ (total) } \text{GeV/c}^2$$

Consistent result. Slightly better precision than Template Method

Combining M_{top} Results

- Excellent results in each channel
 - Dilepton
 - Lepton+jets
 - All-hadronic
- Combine them to improve precision
 - Include Run-I results
 - Account for correlations
- New uncertainty: 1.8 GeV
 - Dominated by systematic uncertainties

Implications for Higgs Boson

Direct searches at LEP2: m_H>114.4 GeV @95%CL

Indirect constraints: m_H<144 GeV @95%CL

Higgs Production at the Tevatron

dominant: gg→ H, subdominant: HW, HZ

WH→lvbb

Now looking for 2 jets

WH selection:

- 1 or 2 tagged b-jets
- electron or muon with
 p_T > 20 GeV
- E_Tmiss > 20 GeV

Expected Numbers of Events:

WH signal: 0.85 + 0.65

Background: $62\pm13 + 69\pm12$

ZH→vvbb

Event selection:

- ≥ 1 tagged b-jets
- Two jets
- $E_T^{miss} > 70 \text{ GeV}$
- Lepton veto
- Veto missing E_T along jet directions

Big challenge:

- Background from mismeasurement of missing E_T
- QCD dijet background is HUGE
 - Generate MC and compare to data in *control regions*
 - Estimate from data

Control:

- Missing E_⊤ direction
- Missing E_T in hard jets vs overall missing E_T

QCD Jet Background to ZH→vvbb

- DØ uses data
 - Define variable that can be used to normalize background
 - Asymmetry between
 - missing E_T inside jets and
 - overall missing E_T
 - Sensitive to missing E_T outside jets
 - Background has large asymmetry
 - Signal peaks at 0

Background understanding using MC

 CDF use MC and check it in detail against data

"QCD" control region:

Jet aligned with missing E_T

⇒Completely dominated by

QCD jets and mistags

"EWK" control region: Identified lepton in event => Dominated by top

Look at data only when control regions look satisfactory

Dijet Mass, CR2, L+L

Dijet Mass distributions

- Backgrounds still much larger than the signal:
 - Further experimental improvements and luminosity required
 - E.g. b-tagging efficiency (40->60%), NN selection, higher lepton acceptance

Single Top Quark Production

- Interesting benchmark for Higgs production
 - Same final state as WH
 - cross section 10 times higher though!
 - S/B too low for counting experiment
 - Advanced techniques are employed:
 - Boosted decision trees (DØ)
 - Neural Networks (CDF/DØ)
 - Matrix Element (CDF/DØ)
 - Likelihood (CDF)

44

- 12/06: DØ see 3.4 σ with 0.9 fb⁻¹: σ =4.9+/-1.4 pb
- 07/07: CDF see 3.1 σ with 1.5 fb⁻¹: σ =3.0^{+1.2}_{-1.1} pb
- Both Agree with SM: σ =2.9+/-0.4 pb

Higgs Search with Neural Network

- Construct neural network can be powerful to improve discrimination:
 - Here 10 variables are used in 2D
 Neural Network
- Critical:
 - understanding of distribution in control samples

$H \rightarrow WW^{(*)} \rightarrow |+|-\sqrt{V}$

-0000000

-അഞ്ഞ g .hº

 Z,γ

 Higgs mass reconstruction impossible due to two neutrinos in final state

Make use of spin correlations to suppress WW background:

- Higgs has spin=0
- leptons in H → WW^(*) → I⁺I⁻νν are collinear
- Main background: WW production

$H\rightarrow WW^{(*)}\rightarrow I^+I^-\nu\nu$ ($I=e,\mu$)

- Event selection:
 - 2 isolated e/ μ :
 - $p_T > 15$, 10 GeV
 - − Missing E_T >20 GeV
 - Veto on
 - Z resonance
 - Energetic jets
- Separate signal from background
 - Use matrix-element or Neural Network discriminant to
- Main backgrounds
 - SM WW production
 - Top
 - Drell-Yan
 - Fake leptons

Ratio to Standard Model

- Further experimental improvements and luminosity expected
 - Will help to close the gap
 - Expect to exclude 160 GeV Higgs boson soon
 - At low mass still rather far away from probing SM cross section

Conclusions

- The W boson, top quark and Higgs boson require
 - Lepton momentum scale
 - b-tagging
 - Jet energy calibration
- Probe electroweak sector of the Standard Model
 - $\delta M_W/M_W = 0.07\%, \delta M_{top}/M_{top} = 1\%$
 - m_H<144 GeV at 95% CL
- Higgs searches ongoing
 - Steady progress towards probing SM cross section
 - Expectations were set high and collaborations are working on meeting these specs
 - Expect sensitivity to 160 GeV Higgs with ∫L=2-4 fb⁻¹

Backup

Systematic Uncertainties

Source	δm_{top} (GeV/c ²)
Remaining JES	1.0
Initial State QCD radiation	0.3
Final State QCD radiation	0.2
Parton distribution functions	0.3
MC modelling	0.2
background	0.6
B-tag	0.2
MC model	0.2
total	1.16

ZH→vvbb candidate

